

ACE Network Subject Information Guide

Optimal Transportation and Monge-Ampere Equations

Semester 2, 2019

Administration and contact details

Host Department	School of Mathematics and Applied Statistics
Host Institution	University of Wollongong
Name of lecturer	Jiakun Liu
Phone number	(02) 4221 8191
Email Address	jiakunl@uow.edu.au
Homepage	https://sites.google.com/view/jiakunl/
Name of Honours coordinator	Marianito Rodrigo
Phone number	(02) 4221 4304
Email Address	marianit@uow.edu.au

Subject details

Handbook entry URL	ТВА
Subject homepage URL	ТВА
Honours student hand-out URL	ТВА
Start date:	ТВА
End date:	ТВА
Contact hours per week:	ТВА
Lecture day and time:	ТВА
Description of electronic access arrangements for	Resources will be hosted and available for download
students (for example, WebCT)	from the Lecturer's website. Details will be given at
	the commencement of the course.

Subject content

1. Subject content description

This subject gives an introduction to the optimal transportation problem, which arises in a broad range of areas: Fluid Mechanics; Partial Differential Equations (PDE); Optimisation; and Financial Mathematics. From an analytic point of view, this subject introduces the elementary existence and uniqueness theory, with a focus on recent development on regularity theory. It involves the study of

the Monge-Ampere type PDE, whose applications extend to more areas, in particular, in calculus of variations and geometry.

2. Week-by-week topic overview

The first half (6 weeks) is about the existence and uniqueness results: Week 1: Introduction to optimal transportation Week 2: Kantorovich's duality and linear optimisation Week 3: Existence of optimal mappings Week 4: Geometric characterisation of optimal maps Week 5: Basics of convex analysis Week 6: Brenier's factorisation theorem

The second half (6 weeks) is about the regularity theory: Week 7: Introduction to Monge-Ampere equations Week 8: Comparison principle and boundary value problem Week 9: A priori estimates and boundary estimates Week 10: Pogorelov type estimates Week 11: Regularity of optimal mappings I Week 12: Regularity of optimal mappings II

3. Assumed prerequisite knowledge and capabilities

Multivariable calculus, Linear algebra, and basic PDEs

4. Learning outcomes and objectives

After successful completion of this subject, students should be able to perform the following tasks:

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in this subject	Associated AQF Learning Outcome Descriptors for this subject
1. Define, understand and utilise some key concepts about the optimal transportation problem;	K1, S1, A1
2. Formulate and solve problems of Kantorovich's dual linear optimisation;	K1, K2, S1, S2, S4, A1, A2
3. Understand and appreciate some fundamental theorems and proofs in fully nonlinear PDEs;	K1, K2, S1, S5, A3
4. Compute and analyse basic types of a priori estimates;	K2, S1, S2, S3, S4, S5, A2
5. Apply ideas from a priori estimates in the contexts of Monge-Ampere type equations;	K2, S2, S3, S4, A1, A2, A4

6. Establish the regularity of optimal mappings with the quadratic cost function;	K1, S1, S3, S4, S5, A3, A4
7. Clearly present mathematical concepts relevant to the subject in written form, demonstrating skill in constructing clear mathematical arguments.	K2, S3, S4, S5, A1, A2, A4

К	nowledge
K	1: coherent and advanced knowledge of the underlying principles and concepts in one or
n	nore disciplines
K	2: knowledge of research principles and methods
s	kills
S	1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and
р	rovide solutions to complex problem with intellectual independence
S	2: cognitive and technical skills to demonstrate a broad understanding of a body of
k	nowledge and theoretical concepts with advanced understanding in some areas
S	3: cognitive skills to exercise critical thinking and judgement in developing new
u	nderstanding
S	4: technical skills to design and use in a research project
S	5: communication skills to present clear and coherent exposition of knowledge and ideas to
а	variety of audiences
A	pplication of Knowledge and Skills
A	1: with initiative and judgement in professional practice and/or scholarship
A	2: to adapt knowledge and skills in diverse contexts
A	3: with responsibility and accountability for own learning and practice and in collaboration
w	vith others within broad parameters
A	4: to plan and execute project work and/or a piece of research and scholarship with some
	ndependence

5. Learning resources

Reference books:

Gilbarg, D. and Trudinger, N. S.: *Elliptic partial differential equations of second order*. Reprint of the 1998 edition, Classics in Mathematics, *Springer-Verlag, Berlin*, 2001.

Villani, C.: *Topics in optimal transportation*, vol. 58 of Graduate Studies in Mathematics. *Amer. Math. Soc., Providence, RI*, 2003.

Villani, C.: Optimal transport. Old and New, Grundlehren Math. Wiss. 338, Springer-Verlag, Berlin, 2009.

Reference notes:

Ambrosio, L.: Lecture notes on optimal transport problems. *Mathematical aspects of evolving interfaces (Funchal, 2000),* 1–52, Lecture Notes in Math., 1812, *Springer, Berlin,* 2003.

Caffarelli, L. A.: The Monge-Ampere equation and optimal transportation, an elementary review. *Optimal transportation and applications*, 1—10, Lecture Notes in Math., 1813, *Springer, Berlin*, 2003.

Evans, L. C.: Partial differential equations and Monge-Kantorovich mass transfer. In *Current developments in mathematics*, 1997 (Cambridge, MA), 65–126, Int. Press, Boston, MA, 1999.

Urbas, J.: Mass transfer problem, Lecture Notes, Univ. of Bonn, 1998.

Some of above references are available in the library or on internet.

6. Assessment

Exam/assignment/classwork breakdown					
Exam	50 %	Assignment	50 %	Class work	
Assignment	due dates	TBA	TBA		
Approximate exam date TBA					

Institution Honours program details

Weight of subject in total honours assessment at	1/8
host department	
Thesis/subject split at host department	BMath (Hons): Thesis worth 25%
	BMathAdv (Hons): Thesis worth 37.5%
Honours grade ranges at host department:	
H1	85-100
H2a	75-84
H2b	65-74
Н3	50-64